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Note 

Semi-implicit Reduced Magnetohydrodynamics 

Recently Harned and Kerner [l] have applied the semi-implicit algorithm [2] 
to the full magnetohydrodynamics (MHD) equations. However, the reduced MHD 
equations [3, 43 are still frequently used to describe low beta, large aspect ratio 
tokamaks. In this note we apply the semi-implicit algorithm to the reduced MHD 
equations. 

The reduced MHD equations [3, 41 are: 

$+(V.V)$=aj+$ 

z+ V.VU=B.Vj 

j=N, QI=A-‘U 

B=i+ixVIl/, V=lxV$. 

We consider a cylindrical geometry, (r, 8, z), with periodicity assumed in 6 and 
z. An evolution equation at the boundary for either 4 or n .V#, where n is the 
normal to the boundary must be given. Both the current and the vorticity are 
defined only in the interior of the domain. In [3], an evolution equation for n . Vd 
is given for the free boundary problem. We concentrate on the fixed boundary 
problem where the normal velocity to the boundary is zero. This implies that 4 and 
$ are constant on the boundary. 

The two standard numerical methods for this system are an explicit predictor 
corrector advance of the ideal reduced equations [S] or a partially implicit time- 
centered scheme [6]. In [6], a two-by-two block diagonal system is solved treating 
all equilibrium quantities implicitly. Following [l], we identify the wave which can 
violate the Courant-Friedrichs-Levy condition and subtract a model term based on 
the constant coefficient wave equation from each side of the exact corrector 
advance. For a uniform poloidal magnetic field in a slab geometry, the shear Alfven 
wave does not propagate and satisfies $,[ = - (k . B,)’ I(/. Thus our corrector step 
is based on the equation 

where L(II/) is the exact nonlinear operator. 
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Our scheme is a modification of the predictor corrector algorithm 

* ;+“=y9:+g(r,k)dr [I,P.(*]~+F) 
( 

$ =*:+“+K 
k 2 

aik = A$k 

u:+ dt = U;+dt [$,j]k+g- cd*, u*l,), 
( 

where [A, B] = P .VA x VB. 
The semi-implicit factor g(r, k) is based upon a Fourier decomposition about a 

cylindrical equilibrium 

where k is the Fourier mode number. The traditional predictor corrector scheme 
corresponds to g(r, k) = 1. Thus a single division by the semi-implicit factor g(r, k) 
converts an explicit predictor corrector scheme to a semi-implicit scheme. We note 
that this second-order artificial damping is proportional to the mode number and 
vanishes at the rational magnetic surfaces. Since the physical eigenfunctions are 
concentrated near the k . B,(r) = 0 surfaces, they are only weakly damped. At the 
boundaries, where numerical instabilities often occur, the damping factor g(r, k) 
will be large. 

In a uniform magnetic field, the Kreiss amplification matrix for the ideal reduced 
MHD scheme is 

where a = k . B,/p’/* and y = a’/( 1 + f a’). The eigenvalues are 

(O+ 1/2)*y2-4y 
2 * 
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The argument of the square root is always negative if f> (0 + $)*/4. In this case, 
(A( * = 1 + (4 - 0) y. Thus the semi-implicit predictor corrector scheme is uncondi- 
tionally stable in uniform magnetic fields for 8 > $ and f> (6’+ +)*/4. For 6’= i, it 
is also second-order accurate in the ideal MHD terms. Following [ 11, the resistive 
diffusion is done separately. 

We have implemented this algorithm on the cylindrical reduced MHD code 
of [S]. The implementation is two lines long and consists of a single division by the 
semi-implicit factor g( r, k). 
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